The PLS approach to Generalised Linear Models and Causal Path Modeling:

Algorithms and Applications

IASC Session INTERFACE Meeting Montreal (Canada) April 19th, 2002

Vincenzo Esposito Vinzi

Dipartimento di Matematica e Statistica Università degli Studi di Napoli "Federico II" vincenzo.espositovinzi@unina.it

1

PLS1 Regression - Single y

Research of \mathbf{m} (value chosen by **cross-validation**) **orthogonal** components $\mathbf{t}_h = \mathbf{X}\mathbf{w}_h$ which are as **correlated** to \mathbf{y} as possible and **also explanatory** of their own group.

 $Cov^2(Xw_h, y) = Cor^2(Xw_h, y) * Var(Xw_h)$

PLS1 regression leads to a **compromise** between a **multiple regression** of **y** on **X** and a **principal component analysis** of **X**.

A new presentation of PLS1 in terms of OLS simple and multiple regressions

1. The m-components PLS regression model (non linear in the parameters) may be written as:

$$\mathbf{y} = \sum_{h=1}^{m} c_h \left(\sum_{j=1}^{p} w_{hj}^* \mathbf{x}_j \right) + residual$$

with the **orthogonality** constraints on the PLS **components**.

2. The first PLS component is defined as:

$$\mathbf{t}_{1} = \frac{1}{\sqrt{\sum_{j=1}^{p} \operatorname{cov}^{2}(\mathbf{y}, \mathbf{x}_{j})}} \sum_{j=1}^{p} \operatorname{cov}(\mathbf{y}, \mathbf{x}_{j}) \times \mathbf{x}_{j}$$

3

A new presentation of PLS1 in terms of OLS simple and multiple regressions

3. The covariance is also the regression coefficient (a_{1j}) in the **OLS simple regression** between **y** and $\mathbf{x}_{j}/\text{var}(\mathbf{x}_{j})$:

$$\mathbf{y} = a_{0j} + a_{1j} \left(\mathbf{x}_{j} / \operatorname{var} \left(\mathbf{x}_{j} \right) \right) + \boldsymbol{\varepsilon}$$

In fact:

$$a_{1j} = \frac{\operatorname{cov}\left(\mathbf{y}, \frac{1}{\operatorname{var}\left(\mathbf{x}_{j}\right)} \mathbf{x}_{j}\right)}{\operatorname{var}\left(\frac{1}{\operatorname{var}\left(\mathbf{x}_{j}\right)} \mathbf{x}_{j}\right)} = \operatorname{cov}\left(\mathbf{y}, \mathbf{x}_{j}\right)$$

Atest on the regression coefficient (a_{1j}) evaluates the importance of variable x_j in building up t₁.
 Non significant covariances are set to 0.

A new presentation of PLS1 in terms of OLS simple and multiple regressions

5. For the computation of the **second PLS component**, we first deflate **y** and **x**_i 's with respect to **t**₁:

$$\mathbf{y} = \mathbf{c}_1 \mathbf{t}_1 + \mathbf{y}_1$$
$$\mathbf{x}_j = \mathbf{p}_{1j} \mathbf{t}_1 + \mathbf{x}_{1j}$$

and then we define to as:

$$\mathbf{t}_{2} = \frac{1}{\sqrt{\sum_{j=1}^{p} \operatorname{cov}^{2}(\mathbf{y}_{1}, \mathbf{x}_{1j})}} \sum_{j=1}^{p} \operatorname{cov}(\mathbf{y}_{1}, \mathbf{x}_{1j}) \times \mathbf{x}_{1j}$$

6. Because of the **orthogonality between residual** x_{ij} **and component** t_i , the covariance is now the regression coefficient in the following **OLS multiple regression**:

$$\mathbf{y} = c_1 \mathbf{t}_1 + a_{2j} \left(\mathbf{x}_{1j} / \text{var} \left(\mathbf{x}_{1j} \right) \right) + residual$$

5

A new presentation of PLS1 in terms of OLS simple and multiple regressions

7. Partial correlation between \mathbf{y} and \mathbf{x}_j conditioned to \mathbf{t}_1 is defined as the correlation between residuals \mathbf{y}_1 and \mathbf{x}_{1j} . The same applies to partial covariance:

$$\operatorname{cov}(\mathbf{y}, \mathbf{x}_{j} | \mathbf{t}_{1}) = \operatorname{cov}(\mathbf{y}_{1}, \mathbf{x}_{1j})$$

leading to:

$$\mathbf{t}_{2} = \frac{1}{\sqrt{\sum_{j=1}^{p} \operatorname{cov}^{2}(\mathbf{y}, \mathbf{x}_{j} | \mathbf{t}_{1})}} \sum_{j=1}^{p} \operatorname{cov}(\mathbf{y}, \mathbf{x}_{j} | \mathbf{t}_{1}) \times \mathbf{x}_{1j}$$

8. Since (t₁,x_{1j}) and (t₁,x_j) span the same space, the contribution of variable x_j to the construction of t₂ is finally tested by means of the following OLS multiple regression:

$$\mathbf{y} = d_{0j} + d_{1j}\mathbf{t}_1 + d_{2j}\mathbf{x}_j + \mathbf{\varepsilon}$$

Non significant covariances are set to 0.

A new presentation of PLS1 in terms of OLS simple and multiple regressions

9. The second PLS compoent \mathbf{t}_2 may be well expressed as a **function of the original variables** (namely, those retained for \mathbf{t}_1 and those significant for \mathbf{t}_2) because the **residuals** \mathbf{x}_{1j} are expressed as functions of the original variable \mathbf{x}_i :

$$\mathbf{x}_{1j} = \mathbf{x}_j - p_{1j}\mathbf{t}_1$$

10.The procedure **STOP**s when **all partial covariances become non significant**.

7

PLS for Logistic Regression

Bordeaux Wine Dataset

Variables observed in 34 years (1924 - 1957)

Meteorological Variables (covariates) - *standardised*

• TEMPERATURE : Sum of daily mean temperatures (°C)

SUNSHINE : Duration of sunshine (hours)HEAT : Number of very warm days

• RAIN : Rain height (mm)

Ordinal Response Variable (three categories)

QUALITY of WINE: 1=Good, 2=Average, 3=Poor

		he I	Dat	as	et		
		Borde	aux \	Vin	e		
Obs	Year	Temperature	Sunshine	Heat	Rain	Quality	
1	1924	3064	1201	10	361	2	
2	1925	3000	1053	11	338	3	
3	1926	3155	1133	19	393	2	
4	1927	3085	970	4	467	3	
5	1928	3245	1258	36	294	1	
6	1929	3267	1386	35	225	1	
7	1930	3080	966	13	417	3	
8	1931	2974	1189	12	488	3	
9	1932	3038	1103	14	677	3	
10	1933	3318	1310	29	427	2	
11	1934	3317	1362	25	326	- 1	
12	1935	3182	1171	28	326	3	
13	1936	2998	1102	9	349	3	
14	1937	3221	1424	21	382	1	
15	1938	3019	1230	16	275	2	
16	1939	3022	1285	9	303	2	
17	1940	3094	1329	11	339	2	
18	1941	3009	1210	15	536	3	
19	1942	3227	1331	21	414	2	
20	1943	3308	1366	24	282	1	
21	1944	3212	1289	17	302	2	
22	1945	3361	1444	25	253	1	
23	1946	3061	1175	12	261	2	
24	1947	3478	1317	42	259	1	
25	1948	3126	1248	11	315	2	
26	1949	3458	1508	43	286	1	
27	1950	3252	1361	26	346	2	
28	1951	3052	1186	14	443	3	
29	1952	3270	1399	24	306	1	
30	1953	3198	1259	20	367	1	
31	1954	2904	1164	6	311	3	
32	1955	3247	1277	19	375	1	
33	1956	3083	1195	5	441	3	
34	1957	3043	1208	14	371	3	

Classical Ordinal Logistic Regression

y = Quality : Good (1), Average (2), Poor (3)

Proportional Odds Ratio Model

$$PROB(y \le l) =$$

 $e^{lpha_\ell + eta_1 Temperature + eta_2 Sunshine + eta_3 Heat + eta_4 Rain}$

 $1 + e^{\alpha_{\ell} + \beta_1 Temperature + \beta_2 Sunshine + \beta_3 Heat + \beta_4 Rain}$

Ordinal Logistic Regression Problems for Interpretation

- Not significant coefficients for some covariates that are known to be influent
- **Uncoherent signs** for some coefficients
- High percentage of misclassified observations

Multicollinearity between covariates

13

Covariates Correlation Matrix

	remperature	Sunsnine	неат	Kain
Temperature	1.00000	0.71235	0.86510	-0.40962
Sunshine	0.71235		0.64645	-0.47340
Heat	0.86510	0.64645	1.00000	-0.40114
Rain	-0.40962	-0.47340	-0.40114	1.00000

Quite **strong correlations** between Temperature, Heat and Sunshine

Use of PLS Discriminant Analysis

PLS Regression of y_1 , y_2 , y_3 on X

The PLS Procedure
Cross Validation for the Number of
Latent Variables

Test for larger
residuals than
minimum
Number of Root
Latent Mean Prob >
Variables PRESS PRESS

0 1.0313 0
1 0.8304 1.0000
2 0.8313 0.4990
3 0.8375 0.4450
4 0.8472 0.3500

Minimum Root Mean PRESS = 0.830422
for 1 latent variable
Smallest model with p-value > 0.1: 1

TABLE OF QUALITY BY PREDICTION						
QUALITY PREDICTION						
Frequency	1	-3	Total			
1	11	0	11			
2	4	7	11			
3	(-)) 11	12			
Total	16	18	34			

Result:

 t_1 : 12 (35.3%) years are misclassified t_1 & t_2 : 7 years are misclassified

PLS Logistic Regression with *variable selection*

<u>Step 1</u>: Research of \underline{m} orthogonal components

t_h = Xw_h which are good predictors of
y and explanatory of the X xariables.
-> <u>m</u> is the number of significant
components based on p-values.

Step 2: Logistic regression of \mathbf{y} on the \mathbf{t}_h

components.

Step 3: Express the logistic regression equation

as a function of X.

PLS Logistic Regression 1st order solution - t₁

- 1. Simple Logistic Regressions of \mathbf{y} on each \mathbf{x}_j : regression coefficients w_{1j} The non significant coefficients w_{1j} are set to 0 -> only **significant variables** contribute to \mathbf{t}_1
- 2. Normalization of $\mathbf{w}_1 = (w_{11}, ..., w_{1k})$
- 3. Simple Logistic Regression of **y** on **t**₁=**Xw**₁ expressed in terms of **X**

17

Step 1: 1st order solution - t₁

Four simple logistic regressions:

	Coefficient	p-value
Temperature	3.0117	.0002
Sunshine	3.3401	.0002
Heat	2.1445	.0004
Rain	-1.7906	.0016

PLS component t₁:

$$t_1 = \frac{3.0117 \text{ Temp\'erature} + 3.3401 \text{ Soleil} + 2.1445 \text{ Chaleur} - 1.7906 \text{ Pluie}}{\sqrt{(3.0117)^2 + (3.3401)^2 + (2.1445)^2 + (-1.7906)^2}}$$

= 0.5688 Température + 0.6309 Soleil + 0.4050 Chaleur – 0.3382 Pluie

			rdea				
Ste	p 2	: Log	istic	Regr	ess	on on	t ₁
Analysis of	Maximur	m Likelihoo	od Estimate	es			
			Standa	rd			
Parameter	DF	Estimate	Erro	or Chi-	Square	Pr > ChiSq	
Intercept	1	-2.2650	0.864	44	6.8662	0.0088	
Intercept2	1	2.2991	0.848	80	7.3497	0.0067	
**	1	2,6900	0.71	55 1	4.1336	0.0002	
TABLEAU CRO			746				
TABLEAU CRO		UALITÉ OBSE	ervée et pp	RÉ <mark>DITE</mark>			
TABLEAU CRO	ISANT Q	UALITÉ OBSE	746		6 mi	isclassifie	nd vea
TABLEAU CRO	ISANT Q	UALITÉ OBSE	ervée et pp	RÉ <mark>DITE</mark>	6 mi	isclassifie	ed yea
TABLEAU CRO QUALITÉ Effectif	ISANT QU PRÉDIC 1	UALITÉ OBSE	ERVÉE ET PF	RÉDITE Total	6 mi	isclassifie	ed yea
TABLEAU CRO QUALITÉ Effectif	ISANT QI PRÉDIC 1	UALITÉ OBSE	S O	RÉDITE Total 11	6 mi	isclassifie	ed yea

Step 3: Logistic Regression in terms of X

$$Prob(Y = 1) = \frac{e^{-2.265+1.53\times Temp\acute{e}rature + 1.70\times Soleil + 1.09\times Chaleur -.91\times Pluie}}{1 + e^{-2.5265+1.53\times Temp\acute{e}rature + 1.70\times Soleil + 1.09\times Chaleur -.91\times Pluie}}$$
 and

$$Prob(Y \le 2) = \frac{e^{2.2991+1.53 \times Temp\acute{e}rature + 1.70 \times Soleil + 1.09 \times Chaleur -.91 \times Pluie}}{1 + e^{2.2991+1.53 \times Temp\acute{e}rature + 1.70 \times Soleil + 1.09 \times Chaleur -.91 \times Pluie}}$$

Comment: This model outperforms the classical ordinal logistic regression model with respect to:

coherence of regression coefficients;
 misclassification rate.

PLS Logistic Regression 2nd order solution - t₂

- Multiple Logistic Regressions of y on t₁ and each x_j
 retain the significant predictors
- 2. Calculation of the residuals \mathbf{x}_{1j} related to simple regressions of retained variables on \mathbf{t}_1
- 3. Multiple Logistic Regression of **y** on **t**₁=**Xw**₁ and each residual **x**_{1i} of retained variables -> regression coefficients **w**_{2i} of **x**_{1i}
- 4. Normalization of $\mathbf{w}_2 = (w_{21}, ..., w_{2k})$
- 5. Calculation of \mathbf{w}^*_2 such that $\mathbf{t}_2 = \mathbf{X}_1 \mathbf{w}_2 = \mathbf{X} \mathbf{w}^*_2$
- 6. Multiple Logistic Regression of \mathbf{y} on $\mathbf{t}_1 = \mathbf{X}\mathbf{w}_1$ and $\mathbf{t}_2 = \mathbf{X}\mathbf{w}^*_2$ both expressed as a function of \mathbf{X}

2

Selection of Variables contributing to t₂

Multiple Logistic Regressions of Quality on \mathbf{t}_1 and each \mathbf{x}_i

	Coefficient	p-value
Temperature	6309	.6765
Sunshine	.6459	.6027
Heat	-1.9407	.0983
Rain	9798	.2544

Comment:

All coefficients are non significant at a level of 5%

-> only the first PLS component is retained

PLS Logistic Regression

The Regression Equation for a binary y

$$\widehat{\log\left(\frac{\pi}{1-\pi}\right)} = c_1 \mathbf{t}_1 + \dots + c_h \mathbf{t}_h$$
$$= c_1 \mathbf{X} \mathbf{w}_1^* + \dots + c_h \mathbf{X} \mathbf{w}_h^* = \mathbf{X} \mathbf{b}$$

$$\mathbf{b} = c_1 \mathbf{w}_1^* + \ldots + c_h \mathbf{w}_h^*$$

Graphical Representations as in PLSR "Data Analysis Approach"

23

PLS Logistic Regression A Graphical Representation of the Decomposition of b

Logistic Regression on PLS components Second Algorithm

- PLS regression of the binary variables describing the categories of y on X variables.
- (2) **Logistic regression** of **y** on the **X**-PLS components.

25

Logistic Regression on PLS components Results

- **Temperature of year 1924** is supposed to be unknown (missing)
- PLS regression of {Good, Average, Poor} on {Temperature Sunshine, Heat, Rain} leads to one PLS component t₁

(cross validation result):

$$\mathbf{t}_1 = 0.55 \times Temperature + 0.55 \times Sun + 0.48 \times Heat - 0.40 \times Rain$$

$$\mathbf{t}_{11} = (0.55 \times Sun + 0.48 \times Heat - 0.40 \times Rain)/0.69 = -0.90285$$
 for year 1924

Logistic Regression on PLS component The Model

$$= \frac{e^{-2.15 \times Bon + 2.28 \times Moyen + 2.66 \times t_1}}{1 + e^{-2.15 \times Bon + 2.28 \times Moyen + 2.66 \times t_1}}$$

$$=\frac{e^{-2.15\times Bon+2.28\times Moyen+1.47\times Temp.+1.46\times Soleil+1.28\times Chaleur-1.07\times Pluie}}{1+e^{-2.15\times Bon+2.28\times Moyen+1.47\times Temp.+1.46\times Soleil+1.28\times Chaleur-1.07\times Pluie}}$$

Algorithm 3 (Grouped Data) PLS Regression of the response **logit** on the predictors

Example: Job satisfaction

(Models for discrete data, D. Zelterman, Oxford Press, 1999)

- 9949 employees in the 'craft' job within a company
- Response : Satisfied/Dissatisfied
- Demographic Factors: Sex, Race (White/Nonwhite),

Age (<35, 35-44, >44),

Region (Northeast, Mid-Atlantic, Southern, Midwest, Northwest,

Southwest, Pacific)

• Objective: Explain Job satisfaction by means of:

all main effects (factors) and 2nd order interactions.

29

Job Satisfaction:

First PLS component t₁

Variables contributing to the construction of t₁

Logistic Regression of Job Satisfaction on:

- each **factor**, taken one at a time (**simple** regressions);
- interactions with main effects (multiple regressions).

Variable	Wald	p-value
Race	2.687	.1012
Age	51.4856	<.0001
Sex	20.8241	<.0001
Region	33.9109	<.0001
Race*Age	1.0578	.5893
Race*Sex	10.77	.001
Race*Region	3.4125	.7556
Age*Sex	7.9389	.0189
Age*Region	7.8771	.7947
Sex*Region	4.1857	.6516

t₁

$$\beta_{0} + \frac{\text{Non-Blanc}}{\text{Blanc}} \begin{bmatrix} \beta_{1} \\ -\beta_{1} \end{bmatrix} + \frac{35-44}{5-44} \begin{bmatrix} \beta_{2} \\ \beta_{3} \\ -\beta_{2}-\beta_{3} \end{bmatrix} + \frac{\text{Homme}}{\text{Femme}} \begin{bmatrix} \beta_{4} \\ -\beta_{4} \end{bmatrix} + \frac{\text{Midwest}}{\text{Morthwest}} \begin{bmatrix} \beta_{5} \\ \beta_{6} \\ \beta_{7} \\ + \frac{\text{Midwest}}{\text{Morthwest}} \\ \text{Northwest} \\ \text{Southwest} \\ -\beta_{9} \\ -\beta_{5}-...-\beta_{10} \end{bmatrix}$$

31

Job Satisfaction: First PLS component t₁

The first PLS component **t**₁ is yielded by a PLS regression of **logit[Prob(Satisfied)]** on the variables:

- Non white White
- Age_{<35} Age_{>44}

•••

- (Age₃₅₋₄₄ - Age_{>44})*(Male - Female)

Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 0.6227 0.0216 830.6539 <.0001

88.0183

<.0001

Job Satisfaction:

0.0212

0.1989

Logistic Regression of Satisfaction on t₁ expressed as a function of X

Logit(Prob(Satisfait)) =

$$0.62 + \frac{\text{Non-Blanc}}{\text{Blanc}} \begin{bmatrix} -.002 \\ +.002 \end{bmatrix} + \frac{35}{35-44} \begin{bmatrix} -.16 \\ -.09 \\ +.25 \end{bmatrix} + \frac{\text{Homme}}{\text{Femme}} \begin{bmatrix} +.10 \\ -.10 \end{bmatrix} + \frac{\text{Mid-Atlantic}}{\text{Southern}} \begin{bmatrix} -.097 \\ +.070 \\ +.028 \\ -.053 \\ \text{Northwest} \\ -.041 \\ \text{Southwest} \\ -.007 \\ \text{Pacific} \end{bmatrix}$$

35

Job Satisfaction:

Second PLS component t₂

Variables contributing to the construction of t₂

Multiple Logistic Regression of Job Satisfaction on:

- t₁ and each **factor**, taken one at a time;
- t₁ and interactions with main effects.

Variables	Wald	p-value
Race	.20	.66
Age	12.81	.00
Sex	4.39	.04
Region	16.28	.01
Race*Age	.71	.70
Race*Sex	.44	.51
Race*Region	4.05	.67
Age*Sex	7.23	.03
Age*Region	7.86	.80
Sex*Region	3.19	.78

Job Satisfaction: Second PLS component t₂

The second PLS component t₂ is yielded by a PLS regression of **logit[Prob Satisfied)]** on the **residuals** from regressions of the variables:

- Non white White
- Age_{<35} Age_{>44}

...

- (Age₃₅₋₄₄ - Age_{>44})*(Male - Female)

on the first PLS component t₁.

37

Job Satisfaction: Second PLS component t₂

 $t_2 =$

$$0.004 + \frac{\text{Non-Blanc}}{\text{Blanc}} \begin{bmatrix} -.008 \\ +.008 \end{bmatrix} + \frac{<35}{35-44} \begin{bmatrix} -.12 \\ +.85 \\ -.73 \end{bmatrix} + \frac{\text{Homme}}{\text{Femme}} \begin{bmatrix} +.61 \\ -.61 \end{bmatrix} + \frac{\text{Mid-Atlantic}}{\text{Southern}} \begin{bmatrix} -.56 \\ +1.34 \\ +.93 \\ -.01 \\ \text{Northwest} \\ +.11 \\ \text{Southwest} \\ +.56 \\ \text{Pacific} \end{bmatrix} = \frac{1}{100} \begin{bmatrix} -.56 \\ +1.34 \\ +.93 \\ -.01 \\ +.11 \\ -.56 \\ -2.37 \end{bmatrix}$$

Non – Blanc
$$\begin{bmatrix} +.30 & -.30 \\ -.30 & +.30 \\ \text{Homme Femme} \end{bmatrix}$$
 + $\begin{bmatrix} +.14 & -.14 \\ 35 - 44 \\ -.07 & +.07 \\ -.07 & +.07 \\ \text{Homme Femme} \end{bmatrix}$

Logistic Regression of Satisfaction on t₁ and t₂

Analysis of	f Maxim	um Likelihoo	d Estimates		
			Standard		
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	0.6172	0.0217	809.8129	<.0001
t1	1	0.2075	0.0214	93.7883	<.0001
t2	1	0.0486	0.0187	6.7525	0.0094

39

Job Satisfaction:

Logistic Regression of Satisfaction on t₁ and t₂ expressed as a function of X

Logit(Prob(Satisfait)) =

$$0.62 + \frac{\text{Non-Blanc}}{\text{Blanc}} \begin{bmatrix} -.003 \\ +.003 \end{bmatrix} + \frac{<35}{35-44} \begin{bmatrix} -.17 \\ -.05 \\ +.22 \end{bmatrix} + \frac{\text{Homme}}{\text{Femme}} \begin{bmatrix} +.13 \\ -.13 \end{bmatrix} + \frac{\text{Mid-Atlantic}}{\text{Southern}} + \frac{+.14}{.07} \\ \text{Northwest} -.06 \\ \text{Northwest} + \frac{+.02}{.02} \\ \text{Pacific} + \frac{+.00}{.00} \end{bmatrix}$$

Non - Blanc
$$\begin{bmatrix} +.10 & -.10 \\ -.10 & +.10 \\ Homme & Femme \end{bmatrix}$$
 + $\begin{bmatrix} +.003 & -.003 \\ 35-44 \\ +.027 & -.027 \\ Homme & Femme \end{bmatrix}$

0

Northeast $\lceil -.13 \rceil$

Logistic Regression of Satisfaction on t₁, t₂ and t₃

Model based on three PLS components:

Analysis of Maximum Likelihood Estimates

Parameter	DF	Estimate	Standard Error	Chi-Square	Pr > ChiSq
Intercept	1	0.6502	0.0240	732.8875	<.0001
t1	1	0.2193	0.0217	102.1492	<.0001
t2	1	0.0369	0.0193	3.6493	0.0561
t3	1	0.0476	0.0145	10.8368	0.0010

41

Job Satisfaction:

Logistic Regression of Satisfaction on t₁, t₂ and t₃ expressed as a function of X

Fourth PLS component t₄

Variables contributing to the construction of t₄

Multiple Logistic Regression of Job Satisfaction on:

- t₁, t₂, t₃, and each **factor**, taken one at a time;
- t₁, t₂, t₃, and interactions with main effects.

Variables	Wald	p-value	
Race	.22	.64	
Age	.77	.68	
Sex	1.63	.20	
Region	8.60	.20	Services and the services of the services and the
Race*Age	.74	.69	All p-values >0.10
Race*Sex	.23	.63	
Race*Region	4.64	.59	
Age*Sex	3.66	.16	
Age*Region	7.75	.80	
Sex*Region	3.05	80	

<u>Conclusion</u>: The fourth PLS component is not significant.

The model is built on 3 components.

43

A more **Exploratory** Approach

(1) PLS Regression of:

 $Y_1 = Logit(proportion of satisfied people)$

Y₂ = Logit(proportion of non satisfied people)

on the 4 factors and all interactions;

- (2) Iterative elimination of predictors with **small VIP**, verifying an increase of Q²(cum);
- (3) Map of the finally retained variables.

Considerations on PLS Logistic Regression

- The « principles » of PLS regression have been extended to logistic regression (qualitative);
- Algorithm 1 and Algorithm 2 show comparable results and performances;
- Logistic regression on PLS components is immediate at the implementation level (SIMCA + SAS or SPSS);
- Algorithm 3 is specifically developed for grouped data where logit can be computed;

Hints for Further Research

- Further applications and simulation studies are needed for better evaluating performances and for studying properties + optimisation criteria;
- Extensions to the linear modeling of a:
 - transformation g(π) of the pdf of y as a function of X (PROC LOGISTIC and PROC CATMOD in SAS);
 - transformation g(μ) of the mean of y as a function of X (PROC GENMOD in SAS);
- Generalised LInear Model (Bastien & Tenenhaus 2001).

47

"PLS Path Modeling" The PLS Approach (NILES or NIPALS) of Herman WOLD to Structural Equations Modeling

- Study of a system of linear relationships between latent variables by solving blocks (combinations of theoretical constructs and measurements) one at a time (partial) by use of interdependent OLS regressions: no global scalar function for optimization but fixed-point (FP) constraint.
- The overall diagram is partitioned into the designated blocks and an initial
 estimate of the composite or latent variable is established whose scores are
 constrained to unitary variance.
- LVPLS is **never underidentified** -> no constraints are needed on any of the parameters in the model as it is the case in SEM.
- The Least Squares criterion is applied on the residuals of both manifest and latent variables (here, with a preference for the estimation of latent variables from their manifest ones as the theory is softer than the empirical observations).
- Predictions and parameter accuracy may not be jointly optimised: optimizing the prediction of composite scores requires deemphasizing parameter estimation between latent variables.

Model Equations

 Each (reflective) manifest variable is written as (outer-directed measurement model):

 Each (formative) manifest variable may contribute (inner-directed measurement model) to the corresponding latent variable:

$$\xi_h = \sum_{\pi_{jh}} \mathbf{x}_{jh} + \delta^{\xi}_h$$
 Weights
$$\eta_k = \sum_{\pi_{lk}} \mathbf{y}_{lk} + \delta^{\eta}_k$$
 Linear Conditional Expectation

There is a structural relationship among the latent variables (structural model): Path Coefficients

$$\eta_{k} = \Sigma_{k'->k} \eta_{k'} + \Sigma_{h->k} \gamma_{h} \xi_{h} + \zeta_{k} = E(\eta_{k} | \eta_{k'}, \xi_{h}) + \zeta_{k}^{50}$$

Estimation Options of PLS Path Modeling

External Estimation

weighted aggregate of MV's

$$\mathbf{v}_{h} \propto \Sigma_{i} \mathbf{w}_{jh} \mathbf{x}_{jh} = \mathbf{X}_{h} \mathbf{w}_{h}$$

Mode Centroid:

 $w_{ih} = sign[cor(\mathbf{x}_{ih}, \mathbf{z}_{h})]$

Mode A

(for reflective/endogenous vars.):

 $w_{jh} = cor(\mathbf{x}_{jh}, \mathbf{z}_{h})$ -> first PLS regression comp.

Mode B

(for formative/exogenous vars.):

$$\mathbf{w}_{h} = (\mathbf{X}_{h}'\mathbf{X}_{h})^{-1}\mathbf{X}_{h}'\mathbf{z}_{h}$$

-> multiple regression = all PLS regression components

Mode PLS: intermediate

Internal Estimation

weighted aggregate of adjacent LV's

$$\mathbf{z}_h \propto \sum e_{hh} \mathbf{v}_h$$

Centroid Scheme (Wold's original):

 $e_{hh'} = sign[cor(\mathbf{v}_{h'}, \mathbf{v}_{h'})]$

-> problems with correlations ≈ 0.

Factorial Scheme (PLS, Lohmoller):

$$e_{hh'} = r_{hh'} = cor(\mathbf{v}_{h'}\mathbf{v}_{h'})$$

Structural Scheme (Path Weighting):

e_{bb'} = multiple regression coefficient of \mathbf{v}_h on $\mathbf{v}_{h'}$ if $\boldsymbol{\xi}_{h'}$ is explicative of $\boldsymbol{\xi}_h$ $e_{hh'} = r_{hh'}$ if ξ_h explicative of $\xi_{h'}$

Mode PLS: intermediate

Mode LISREL: take LISREL estimates 5

Computation of Estimates

An example with Mode A + Centroid Scheme

(1) External Estimates (3) Computation of w_h

$$\mathbf{v}_1 = \mathbf{X}_1 \mathbf{w}_1$$

$$\mathbf{v}_2 = \mathbf{X}_2 \mathbf{w}_2$$

$$\mathbf{v}_3 = \mathbf{X}_3 \mathbf{w}_3$$

$$W_{1i} = cor(\mathbf{x}_{1i}, \mathbf{z}_{1})$$

$$\mathsf{w}_{2\mathsf{j}} = \mathsf{cor}(\mathbf{x}_{2\mathsf{j}}\,,\,\mathbf{z}_2)$$

$$w_{3j} = cor(\mathbf{x}_{3j}, \mathbf{z}_3)$$

Algorithm

$$z_1 = v_3$$

$$\mathbf{z}_2 = -\mathbf{v}_3$$

$$\mathbf{z}_3 = \mathbf{v}_1 - \mathbf{v}_2$$

(2) Internal Estimates • Start with arbitrary weights

$$\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3.$$
 $\mathbf{w}_1 = (1, 0, ..., 0)$

- Obtain the new weights w_h by means of steps from (1) to (3).
- Iterate the procedure till convergence (guaranteed only for 2 blocks but encountered in practice also for more than 2 blocks).

1.29

100.00

69.1757

21.2668

LOYALTY

PLS LISREL VS. PLS is related to LISREL as PCA is related to FACTOR ANALYSIS Oriented to Prediction of MV's Oriented to parameter estimation and LV's (variance-based) (modeling covariances) Reflective + Formative MV's Typically Reflective LV's Distribution free + Predictor **Distributional Assumptions Specification** Observations need to be independent Observations may be dependent Each latent variables is a **Factor Indeterminacy** linear combination of its own Indirect estimation of the latent manifest variables variables built with the whole set of manifest variables Consistency "at large" Optimal prediction accuracy **Consistent estimates** Evaluation of the predictive **Optimal parameter accuracy** performance by means of Model evaluation by means of jackknife -> Q2 hypothesis testing so that N is required to be big enough N=10, p=28 Sooner or later the model will be refused by chi-square -> RMSEA Better measurement model because latent variables are Better structural model because constrained in the X-space latent variables are space-free

Main References for PLS Logistic and GLM

- Bastien, P. & Tenenhaus, M. (2001): PLS generalized linear regression. Application to the analysis of life time data, Proceedings of the 2nd International Symposium on PLS and Related Methods, (Capri, October 1-3, 2001), Paris: CISIA-CERESTA.
- Esposito Vinzi, V. & Tenenhaus, M. (2001): PLS logistic regression, Proceedings of the 2nd International Symposium on PLS and Related Methods, (Capri, October 1-3, 2001), Paris: CISIA-CERESTA.
- Esposito Vinzi, V. & Tenenhaus, M. (2002): PLS logistic regression: recent developments with variable selection and grouped data features, Club PLS, (Jouyen-Josas, March 14, 2002).
- Marx, B.D. (1996): Iteratively Reweighted Partial Least Squares Estimation for Generalized Linear Regression. Technometrics, vol. 38, n°4, pp. 374-381.
- Tenenhaus, M. (1998): La régression PLS. Paris: Technip.
- Tobias, R.D. (1996): An introduction to Partial Least Squares Regression. SAS Institute Inc., Cary, NC.
- Wold S., Ruhe A., Wold H. & Dunn III, W. J. (1984): The collinearity problem in linear regression. The Partial Least Squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput., vol. 5, n° 3, pp. 735-743.

57

Main References for PLS Path Modeling

M.P. Bayol, A. de la Foye, C. Tellier, M. Tenenhaus:

Use of PLS Path Modeling to Estimate the European Consumer Satisfaction Index (ECSI) Model, Statistica Applicata - Italian Journal of Applied Statistics, (12), 3, 361-375, 2000

C. Fornell:

A National Customer Satisfaction Barometer: The Swedish Experience, Journal of Marketing, (56), 6-21, 1992

C. Lauro, V. Esposito Vinzi:

Some contributions to PLS Path Modeling and a system for the European Customer Satisfaction, Italian Statistical Society Meeting, 2002

J.B. Lohmöller:

Latent variable path modeling with partial least squares, Physica-Verlag, 1989

M. Tenenhaus:

L'approche PLS, Revue de Statistique Appliquée, 47 (2), 5-40, 1999

H. Wold:

Soft modeling. The basic design and some extensions, in: Vol.II of Jöreskog-Wold (eds.), Systems under indirects observation, North-Holland₃₈ Amsterdam, 1982