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Introduction and motivations of this work

Basically, two type of models have been proposed for the
interpretation and resolution of complex chemical data systems:
- Bilinear models for two-way and three-way data

- Trilinear models for three-way data
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Introduction and motivations of this work

- In this presentation, we will review this situation 1n
a chemical context, considering results obtained by
application of different three-way methods based or
not on trilinear models.

« All this has been analyzed in a previos paper:
‘Comparison of three-way resolution methods for
non-trilinear chemical data sets’. A. de Juan and R.

Tauler. J.of Chemometrics, 2001, 15, 749-772



Outline:

e Introduction and motivations of this work

* Models and structures for complex (three-way) chemical
measurements data

* Results of comparison of models and methods to analyze
complex (three-way) chemical measurements data

e (Conclusions



Chemical measurements
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Chemical measurements
Three-way data sets

Two modulated spectral modes 3-way data sets
- excitation mode

- emission mode N
oS

One chemical mode
sample, reaction/process evolution,
pH, time, temperature,.

spectrum

Emiss. spectrum

A excitation

Excit.

This is the ‘archetypical’ three-way data set
Sulfilling a trilinear model  oresion

Is this always true?
Baseline problems, instrumental reproducibility,
scattering, missing, outliers. ..




Chemical measurements
Three-way data sets

Two chemical modes 3-way data sets
- chromatographic (elution), kinetic,
equilibrium, temperature..., mode PSS
S
- sample, run, reaction/process number >
Spectrum

()
One spectral mode Ellg

= S
UV-VIS, NIR, FT-IR, NMR, CD, spectra “E

Wavelengths

These are the more common three-way
data sets in Chemistry!!!

Do these data fulfill a trilinear model?



Models to describe chemical
measurements

Models for what?

Models for:

1. exploratory data analysis?
2. data interpretation?

3. data resolution?

Models for data resolution = resolution of the ‘true’
underlying ‘physical/chemical’ sources of data variation

- hard-modeling (physico-chemical model)
- soft-modeling (no physico-chemical model,
soft constraints)



Chemometric soft-models to describe
chemical measurements

One way data =» Linear and non-linear models

Two way data =» Bilinear and non-bilinear models
Non-bilinear data can still be linear
in one of the two modes

Three-way data =» Trilinear and non-trilinear models
Non-trilinear data can still be linear
in two of the modes (bilinear) =»
This is the more common situation in
Chemistry!!!



Factor Analysis/Principal Component Analysis
Bilinear Model

D=UVI+E

Unique solutions but without physical meaning

Constraints: U orthogonal, V! orthonormal
VT in the direction of maximum variance
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Multivariate Curve Resolution Bilinear Model

D=CST+E
Non-unique solutions but with physical meaning (rotational/
intensity ambiguities are present)

Constraints: C and ST non-negative
C or ST scaled (normalization, closure)
Other constraints (unimodality, local rank, selectivity... )

N
dy. = ch.kskj +e,
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Bilinear models for two-way resolution:
Multivariate Curve Resolution
(reaction/process data modeling)

0

| | | | | — = |
10 20 30 40 50 60 70 80 90

J J
ST
+ E
A
d. .= Ii]c S, €.
D 1 kllkk] 1

Bilinearity!



Extension of bilinear models to three-way data

row-wise, horizontal-wise unfolding
THREE-WAY DATA ARRAY

UNFOLDING/MATRICIZATION k=1 k=2 k=K ~
versus
TWO-WAY DATA ARRAY ~
AUGMENTATION AL
j=1,....J j=I1,...J j=1,...,J
j=1,..J
N-\
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I | : ~
~ k=1, vertical :
j=1,..,J unfolding
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tube-wise, depth-wise unfolding T k




Multivariate Curve resolution for Three Way data Multivariate Curve resolution for Three Way data
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Multivariate Curve Resolution for Three Way data
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Trilinear models for three-way data: PARAFAC
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n=1

*Same number of components
in the different modes

*No interaction between
components in different modes

Slice-wise representation
Element-wise representation
+ e /

Stretched/unfolded representation
D, =[D,,D,,...D]1=SI[(Z' ®C") e



Trilinear models advantages:

* Very efficient in the investigation of complex three-way data
structures.

* They provide unique solutions avoiding the presence of
factor analysis rotation ambiguities, frequently present when
bilinear models are applied to two-way data.

Trilinear models disadvantages

* Very (or too!) rigid/constrained in practice

* Many times, strictly trilinear models are not appropriate for
the resolution of underlying physic-chemical models nor for
the estimation of the ‘true’ vector profiles causing the
observed data variance
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PARAFAC2

different C, matrices

for each D, slab

C profiles are not required
to be identical in all slabs!

ST N

Condition to be fulfilled.
Is this condition too rigid?

.= C.C,T

What really means?

e




Non-trilinear models for three-way data: Tucker3 models

Different number of components
ﬂ in the different modes Ni# Nj # Nk

Interaction between components

s

|®

in different modes is possible

D - N, N, Ny Element-wise representation

dijk = Z, Z Z, CiniSjanknkgninjnk + ey

C ni=1 njzl nk:1

Three-modes are
reduced!

Stretched/unfolded representation
T T T T T T T
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Slice-wise representation
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Non-trilinear models for three-way data: Tucker2 models

S

Z-mode 1s not
reduced and the other
two (C- and ST-modes
are reduced

G

ST

Different number of components

in the two modes Ni# Nj

Interaction between components
in the two modes is possible

N N, Element-wise representation

dijk = chinisjnjgninjk + €

ni =1 nj:1

Stretched/unfolded representation

D! =[D,,D],...D;]1=SG/ (I, ®C")

Slice-wise representation
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Non-trilinear models for three-way data: Tucker1 models

Interaction between components
in different modes is not possible

ST

Element-wise representation

/ ngksjn i'

Only ST mode is reduced!

C and Z modes are in G Stretched/unfolded representation

D/ =[D,,DJ,....D]=SG/ (I, ®I,)

Slice-wise representation

S D =G,S'

D, =| Gy

Tuckerl model 1s equivalent to unfolded bilinear model!!



Trilinearity can be implemented independently for

eactrcompenentichemical specics) in MICR-ATS! Effect of application of a trilinearity constraint
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Trilinearity
deviations

Three-way models options
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HPLC-DAD DATA SETS

C-mode: chromatographic profiles.

S-mode: spectra profiles.

Z-mode: quantitative profiles

Z-mode <

Spectrum

C-mode

Elution time

Chromatogram

Wavelengths
S-mode



Data set 1

DATA SET 1 (real data): LC-DAD determination

of organophosphorous pesticides in natural waters

Total nr. of chemical compounds: 3.
(A,B known, C unknown)

Nr. of pure spectra: 3

Nr. of chromatographic profiles: 5

AN

Nr. of slabs (data
matrices): 3

D, (A,B,C)

D, (A standard)
D, (B standard)

Every slab (data matrix) is bilinear!
= T T T
D,=cps'pt+tcgs'gtccs'c+E,
— T
D, =cps’p+E,
— T
Data are not trilinear since c, and cp

and cg and c are different in shift
and shape



Data set 1

Building three-way models: PARAFAC model is built
with 3 components in3each mode

3
5 All slabs are modeled
st |3 Withthe same C and ST

| b =1 c considering only three

B J profiles in each mode!

3
J
D, C L ST
3 <\\\\Z:|;\\\ 3 Dk = C Zk STC
I =1
3 J
J 3

PARAFAC stretched (unfolded) representation
TAHTAT | TyTyT T T
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Data set 1

Building three-way models: PARAFAC2 model is built
with 3 components in each mode

213
3 All slabs are modeled
St 3 with the same ST
D Tl J but different C,,
P considering three
J o profiles in each mode!
3 3 .
b e Z, Components in C-mode
‘ “— = - can be slightly different!
3
- |
J D, =C,Z ST
J 3

However this condition should be obeyed:

C,C,T=C,C,T

= CkaT What this really means?




Building three-way models: MCR model is built using 3
components in the S mode and 3 components in the

(unfolded) augmented C mode
Data set 1

D; = [Dy;D,;D;] = 3
[C1,C2;C3] ST D, mixture CACg[Cc C1

ST

DT, =[D", DT,DT;] = D,
S[CT,CT,CT;]

standard A | = |Cp 00 C2

D,

Every slabs is modeled standard B Olce| O C,
with three different profiles

in C,, C,, Cj, but with the D.yg c
same three profiles in ST v

D, =C, ST z




Data set 1

Building three-way models: Restricted Tucker3 model
is built using 5 components in the C-mode and 3
components in the S- and Z-modes

3
A
G | ST 3
| D - (5,3,3) J
_K=1,2,3
r C
5
D, C M, ST




Data set 1

Fit values for data set 1

Methoa Fit % Applied constraints:
PARAFAC 93.0 Non-negativity
Unimodality
PARAFAC?2 98.7
MCR 98.0 Different type of initial
Tucker3 97.8 Estimates
Maximum number of
( Ze;,k ) [terations: 100
Fit% =100 1 - |2
it% \} Zd ;k
N .




Data set 1

COMPARISON OF RESOLVED PROFILES

interferent
interferent e known spectra

PARAFAC ®

PARAFAC2 ©

MCR ©

' TUCKER3 ©

100 200 300



Data set 2

DATA SET 2

Total nr. of compounds: 4.  Nr. of slabs (data matrices): 4
(A,B, C and D) D, D,, D;, D, (AB,C,D)

Nr. of pure spectra: 4
Nr. of chromatographic
profiles: 16

Two data sets, with and without
noise

Every slab (data matrix) is bilinear!
= T T T T

D,=cps'ptcgs'gtces'c+cps’py+ E,

/)m[\ D,=cgsTp+ CcsTg+ cgs’c+cys’py + E,

= csT T T T

0 51 102 153 204 D3=CsS'p*+c;s'gtceysic+cs’p+E;
= T T T T

D,=cys'ptcCyS'gt+ CoS'c*+ Cps'pt E,

5
ST
w Data are not trilinear since
0 concentration profiles of A, B, C and

0 20 40 60 80 D are different in shift and shape!

1 V =~ N N y =~

C, C, C;, C,




Data set 2
Building three-way models:

PARAFAC model is built with 3 components in each

mode
4

Sz All slabs are modeled
sT |4 with the same C and ST
_ . considering four
D profiles in all modes!
4
Zk
AN PARAFAC slice-wise
2 ST representation
D, || C P
4,4 4,) _
1,J 1,4

PARAFAC stretched (unfolded) representation
TATIATNT | TYyTyTyT T T
'D/D;D{D; |=S| ILLI] |(Z" ®C")



Building three-way models:

Data set 2

PARAFAC2 model is built with 3 components in each

mode
K=1234 . 24
4
C ST 4
D ) | J
J 4
D, Z,
: Zk T 4
- I Ck \\ S
J

J 4

All slabs are modeled
with the same ST but
different C, and
considering only three
profiles in each mode!
Components in C-mode
can be different!

D,=C,Z ST




Building three-way models:

Data set 2

MCR model is built using four components in the S mode
and four components in the (unfolded) augmented C mode

4
D...= [D4;D,;D;;D,] =
D",,,= [DT D,DT, DT,]= "% miwe2 | =lo ic lc c,C,

S[CT,CT,CT3CT]

D, mixture CilCsLk(C

Every slab is modeled e I
with four different profiles D, . .
in C,, C,, C;, C, but with the e CmCENCaCrc,

same four profiles in ST

D, =C, ST

aug

ST



Building three-way models:Tucker2 model is built >

using 16 components in the C-mode and 4
components in the S- mode

4
G ST 4
It 1s not possible to build a B 16;4x 7]
Tucker3 model, with the 3 D -
modes reduced !
Z-mode 1s confounded in C
C-mode! J
16
Stretched/unfolded TTRTRT | TATATAT T
Slice-wise _ T
representation Dk _C Gk S
ST )
I D, = 1] C G, |
J

16




Data set 2

Building three-way models Tucker2 model. How is G ?
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Concentration profiles
used in the simulation

C in MCR is full rank 4!

C, | >

Condition Number is 4.3

Calculation of C*?

2 3 4 . . . 15 16

C

C in Tucker2 is close to rank deficient!
Condition number is 405.8

Singular value

Singular value

Data set2
12
10
8 i
6 i
4 i
2 i
0 ‘ ‘ ‘
0 1 2 3 4
Number of factors
12
10 -
8 |
6 |
4 |
2 |
0 T
0 4 8 12 16

Number of factors



Data set 2

Fit values for data set 2 (noise free)

Methoa Fit % Applied constraints:
PARAFAC 91.6 Non-negativity
Unimodality
PARAFAC?2 93.6
MCR 99.9 Different type of initial
Tucker3 99.9 Estimates
Maximum number of
( Ze;,k ) [terations: 100
Fit% =100 1— |&&°
it% \} Zd ;k
N .




Data set 2

Fit values for data set 2
(heterocedastic proportional added noise 6.71%)

Methoa Fit % Applied constraints:
PARAFAC 89.3 Non-negativity
Unimodality
PARAFAC?2 93.4
MCR 93.3 Different type of initial
Tucker3 93.5 Estimates
Maximum number of
( Ze;,k ) [terations: 100
Fit% =100 1 - |2
it% \} Zd ;k
N .




COMPARISON OF RESOLVED PROFILES

(noise free case)
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Guidelines for method selection

Deviations
from trilinearity Mild Medium Strong
Array Size RELLLLLL2R2RRLLLLL222RRRLLLL2222RRRLL2L22RRRRQLP22220000000202020000000082082000000000200000000000202202 Z ------------------- s
; A :
Small | {PARAFAC
PARAFAC?2 :
TUCKER3
Medium
TUCKER2
v
LargeY: < > MCR



CONCLUSIONS

v'PARAFAC performance is extremely vulnerable to
deviations from trilinearity.

Performance diagnostic: comparison of lack of fit
between PARAFAC and any other non-trilinear model-
based method.

Similar lacks of fit
= trilinear system
— use recommended

Higher lack of fit for PARAFAC
= non-trilinear system
—> avoid use



CONCLUSIONS

v' PARAFAC?2 requires the presence of strongly
patterned deviations from trilinearity
(C,C,T=C,C,’=...=C,C,T).

C-mode (e.g., elution profiles) is unconstrained.

Performance diagnostic: examination of profile shape
iIn C-mode.
Chemically meaningful shapes
= PARAFAC?2 pattern
= use recommended

Chemically meaningless shapes
— no PARAFAC?2 pattern

— avoid use



CONCLUSIONS

v'Restricted TUCKER and MCR perform similarly while
not working with large data arrays.

v'Pseudoinversion of matrix and distinction of profiles
related to the elution mode is more stable and gives
better results for the MCR C matrix (with augmented C
profiles) than for the TUCKER C matrix.



General Conclusions

v'Chemical measurements provide in many
circumstances two-, three- and multi-way data

v'Chemical data usually do fulfill a bilinear model

v'Chemical data do not fulfill a full trilinear model in
many cases

v'Mixed bilinear and trilinear data models can be
optimal in many circumstances and they can be
solved using constrained bilinear models of
matricized/unfolded cubes or augmented matrices like
in MCR



Software

1. N-way toolbox by C. Andersson and R. Bro.
http://www.models.kvl.dk/source/nwaytoolbox

2. MCR-ALS by R. Tauler and A. de Juan.
http://www.ub.es/gesqg/mcr/mcr.htm



	Bilinear and trilinear data structures and models for the resolution and interpretation of complex chemical data systems
	Chemical measurements

